
arXiv.org pre-print manuscript No.
(will be inserted by the editor)

Learning the PE Header, Malware Detection with Minimal
Domain Knowledge

Edward Raff · Jared Sylvester · Charles Nicholas

the date of receipt and acceptance should be inserted later

Abstract Many efforts have been made to use various
forms of domain knowledge in malware detection. Cur-
rently there exist two common approaches to malware
detection without domain knowledge, namely byte n-
grams and strings. In this work we explore the feasibility
of applying neural networks to malware detection and
feature learning. We do this by restricting ourselves to a
minimal amount of domain knowledge in order to extract
a portion of the Portable Executable (PE) header. By
doing this we show that neural networks can learn from
raw bytes without explicit feature construction, and
perform even better than a domain knowledge approach
that parses the PE header into explicit features.

1 Introduction

It is often desirable to use domain knowledge when
building a machine learning model for a classification
task. Domain knowledge is any kind of information used,
either in feature selection, processing, design choices,
code written or libraries used, that is specific to the
given problem domain. Such knowledge cannot often be
applied to new domains, but using domain knowledge

E. Raff · J. Sylvester
Laboratory for Physical Sciences, 8050 Greenmead Drive College
Park, MD 20740
E-mail: edraff@lps.umd.edu, E-mail: jared@lps.umd.edu

E. Raff · C. Nicholas
Computer Science and Electrical Engineering, University of Mary-
land, Baltimore County, 1000 Hilltop Circle Baltimore, MD 21250
USA
E-mail: raff.edward@umbc.edu, E-mail: nicholas@umbc.edu

E. Raff · J. Sylvester
Booz Allen Hamilton, Strategic Innovation Group
E-mail: raff_edward@bah.com
E-mail: sylvester_jared@bah.com

allows us to embed our prior beliefs into the system.
This may aid our intuition as to what classification mod-
els will perform best, and what level of performance
we might be able to expect. However, it can be diffi-
cult to effectively apply domain knowledge to the task
of malware detection, which we define as building a
classifier that indicates whether an executable binary
is benign or malicious. The format and nature of exe-
cutable files is complicated and not always consistent.1

Just parsing a Portable Executable (PE) file correctly
is difficult. While libraries exist to do this, their devel-
opment is non-trivial and time intensive. Furthermore,
the Windows operating system does not always enforce
its own specification [20, 33], and that specification may
be changed in the future, requiring additional work to
update a system. These problems are only compounded
by the fact that malware may intentionally violate the
PE standard or Windows operating system (OS) loading
process.

Given these difficulties, we seek to examine the prac-
ticability of the malware detection problem with mini-
mal domain knowledge. Indeed, byte n-gramming is a
technique commonly used in malware classifiers, in part
because it requires no domain knowledge [31]. However,
it has been shown that whole file n-gramming presents
a computational burden and does not perform as well
as previous results suggested [44].

In this work we evaluate the feasibility of learning
with a minimal amount of domain knowledge using

1 Several types of files are “executable” under Windows. We
abuse the terminology slightly in that when we refer to “executa-
bles” we mean executable binaries, the names of which normally
have the “exe” or “dll” suffixes.

2 Edward Raff et al.

neural networks on raw byte sequences.2 To do so, we
restrict ourselves to only the PE header of an executable.
Specifically, we consider only the MS-DOS, COFF, and
Optional headers of the PE file. (Despite its name, the
Optional header is usually required.) A review of other
approaches using only header information or minimal
domain knowledge for malware detection is given in
section 2. In section 3 we describe our two baseline
approaches, and the minimal amount of domain knowl-
edge needed for our approaches. We then describe the
specifics of our network architecture designs in section 4,
which use only the raw bytes extracted from the PE
header. The performance of all of these approaches is
evaluated and discussed in section 5, where we show
that our neural network achieves higher accuracies than
our baselines without needing to use domain knowledge.
To give further confidence to these results we exploit
our architecture design in section 6 to provide evidence
that our neural networks are learning concepts similar
to those learned in the domain knowledge approach, but
from only raw byte sequences. Our last experiments are
conducted in section 7, where we discuss a calibration
issue observed in our results, and how it can be remedied
with minimal additional labeled data. We conclude in
section 8 with suggestions for future work.

2 Related Work

In this work we restrict ourselves to information found in
the PE header. A number of prior works have presented
experiments which use only PE header information and
obtained high accuracies, showing this to be a reasonable
approach. One of the more thorough examinations of
features from only the PE header was done by Shafiq et
al. [52], in their PE-Miner project. They used a total of
189 features, 73 of which were binary features indicating
the presence or absence of specific DLL library imports.
They reported an overall Area Under the ROC Curve
(AUC) of 0.991 for distinguishing between benign and
malicious executables.

Schultz et al. [49] presented experiments using multi-
ple feature types, including some using only PE header
features. They used a list of DLL imports and func-
tion imports, obtaining 89.4% accuracy. Similar work
considered only imported functions and obtained over
90% classification accuracy [30]. Elovici et al. [11] used
imported functions as well as PE header fields, such as
machine type and creation time. Using a Decision Tree
as their classification model, their approach obtained

2 We assume that the reader has a basic knowledge of neu-
ral networks. For those who seek a firmer background in neural
networks and deep learning, we suggest Goodfellow et al. [17].

95.5% accuracy. Menahem et al. [32] used functions and
fields from the PE header combined with other features.

In summary, previous work indicates that domain
knowledge in the form of information gleaned from the
PE header is effective at building classifiers that distin-
guish between benign and malicious executables. We
therefore do likewise, by creating a baseline using only
fields from the PE Header, as described in subsection 3.1.

Previous work has used domain knowledge from
PE headers to train neural networks for malware de-
tection [50]. Attempts have been made to use neural
networks on top of byte n-gram features [11, 27, 36, 63].
In such an effort, the presence or frequency of specific
n-grams is used as input to a neural network, and its
output is an indication of whether the suspect software
is benign or malignant. To train such a neural network,
samples of benign and malicious software are used. While
using neural nets on top of n-grams remains a domain-
agnostic approach, it also inherits the shortcomings of
byte n-grams, which include a partial loss of character
sequence information, and a computational burden once
n grows beyond, say, n = 4. Similar work with neural
nets for malware detection has been done with other
feature types, such as op-code n-grams [35]. However, all
of these approaches still require the initial feature speci-
fication and feature selection. In our approach, detailed
in section 4, we look at doing the least possible amount
of pre-processing, and allowing the neural network to
build all of its needed representations, i.e. construct its
own features, from the raw data.

We are interested in having a neural network learn
its own feature representation from raw data due to suc-
cesses in other domains, where this approach has lead
to reduced domain knowledge and increases in accuracy
simultaneously. For image classification Krizhevsky et al.
[26] provide the first significant use, where they reduced
the top-5 error rate on the ImageNet LSVRC-2010 con-
test from 25.7% using classical image processing feature
extractors down to 17.0%. Recent work using related
techniques has reduced that error rate to 5.71% [21].
For text classification Zhang et al. [64] used convolu-
tion networks on a variety of datasets, and found them
to out-perform classic approaches on the four largest
datasets, which where also the most challenging datasets
evaluated. Similar progress has been made in machine
translation, with recent results from Google approach-
ing average human quality [57]. Our goal is to work
towards a domain knowledge-free system for classifying
malware. If successful, such a system could potentially
be used for other similar domains (such as iPhone, An-
droid, or Linux malware) with minimal work, providing
additional utility through flexibility.

Learning the PE Header, Malware Detection with Minimal Domain Knowledge 3

In subsection 4.2, we explore the potential for Re-
current Neural Networks, which process sequences of
feature vectors, for this malware detection problem. Hid-
den Markov Models (HMMs) are another sequence based
model that has been applied to the tasks of malware de-
tection and family classification. Wong and Stamp [56]
used HMMs over assembly op-codes to model specific
malware families. Shafiq et al. [51] looked at first order
HMMs over byte n-grams to model benign files, and
this work is the most direct counterpart to our RNN
approach. For detecting malware embedded into benign
executables, they report a true positive rate of 84.9% and
false positive rate of 16.7%. Their approach requires no
domain knowledge, but is limited by the computational
tractability of HMMs: to modelm’th-order dependencies
between S states, a HMM requires O(Sm+1) parameters.
Our RNN approach is able to learn higher order depen-
dencies over the whole sequence. HMMs also lack the
ability to create hierarchies of features, a demonstrated
benefit of neural networks [45].

Some previous work has been done to apply RNNs
to problems related to malware analysis. Pascanu et al.
[40] applied RNNs to the task of malware detection,
but used high level features hand-engineered by humans
and collected through dynamic analysis. We instead
seek to have the RNN learn any needed features for us,
and we are restricting ourselves to static analysis. Shin
et al. [53] used RNNs to identify function boundaries
through partial disassembly of binaries. Their work uses
byte inputs in a similar way to our approach, but for
a different task. The problem tackled by Shin et al. is
also simpler, requiring only a single hidden layer of 32
neurons to accomplish the task. As far as we are aware,
no other work has yet considered using neural networks
for malware detection from raw byte sequences.

3 Baseline Approaches

We now consider two baseline approaches for classifica-
tion using information only from the PE header. Our
first and primary baseline will extract these features
using an existing library designed to work with the mal-
formed headers present in malicious binaries. We will
then discuss what of this domain knowledge is needed
to extract the bytes where our features are stored. And
finally we will present a simple approach using current
domain knowledge-free methods on these bytes. These
bytes will also be used as the only inputs to our neural
networks described in section 4.

3.1 Domain Knowledge Approach

For our primary baseline we built a system similar to
PE-Miner, restricted to only the first three headers of a
PE file. These three headers almost always occur within
PE executables and are easy to extract. By using these
headers in particular, and not fully replicating the PE-
Miner approach, we can ensure that all methods we
evaluate here have equivalent information available for
learning from. We use the PortEX library [20] to extract
115 features, of which 112 are numerical (such as the
pointer to the Import table) and 3 are categorical (such
as the intended runtime architecture), from the header
of an executable. The PortEX library is specifically
designed to work with real malware headers, which do
not always conform to the official specification [10]. We
use a subset of the features PE-Miner used so that all
of our approaches tested are obtaining their features
from the same fixed byte range of a binary, making
the theoretical information available to all approaches
equivalent. In early development we tested multiple
different libraries for parsing the PE headers of malware,
and did not always obtain consistent results on malware
data. We settled on use of PortEX as it ran successfully
on the most malicious binaries in a small test and was
easy to use.

For our classifier, we tested the Random Forests [4]
and the Extra Random Trees [16] algorithms. Both
of these tree-based methods support categorical and
numerical features. A tree based approach is favorable
for this feature set since they are scale invariant. Our
extracted features naturally have very different scales:
some are binary 0/1 numeric values, and others contain
an offset or field size, which could be a large integer. We
used 100 trees for each model. Boosted decision trees
were also tested, but did not perform as well and took
longer to train, so their results are not included. We
also tested several non-tree-based algorithms, such as
linear and kernel SVMs, but they did not perform as
well as any tree based approach for this feature set.

Domain Knowledge Needed for Other Approaches

While reviewing our domain knowledge approach of
using header fields for feature vectors, we take a moment
to discuss what subset of this knowledge is needed to
perform our other two approaches. Indeed, this subset
is extremely limited: the only necessary information is
the length of the header (in bytes) and the PE header
offset location.

According to the PE specification [33], the MS-DOS
header is always the first 64 bytes of an executable bi-
nary. The only domain knowledge our other approaches

4 Edward Raff et al.

need is the value of the PE header offset at byte 0x3C.
The COFF and Optional PE header information is con-
tained in the next 248 to 264 bytes following this offset,
depending on whether the program binary is for 32 or
64 bit machines. We can always take the 264 bytes for
safety, and concatenate it with our MS-DOS header,
giving us 328 bytes to extract and use for our almost do-
main knowledge free approaches. In the rare cases that
a file ends before the next 264 bytes can be obtained, we
simply pad with zeros. In total this takes only a handful
lines of code to extract, and is considerably smaller and
less effort than the libraries that exist for parsing the
PE header.

All of the information used by our domain knowl-
edge approach is fully contained in these 328 bytes.
Our other approaches must learn to extract that infor-
mation from the raw bytes, which is a lower form of
representation. Successfully extracting that information
and obtaining accuracies comparable to the tree based
domain knowledge approach would be an advantage in
building reliable classifiers, avoiding the difficulties of
extracting the features in practice.

While many previous papers have used the contents
of the import table [11, 30, 32, 49, 52] we decided to
exclude the import tables from our work. One of the
main objectives of this paper is to minimize the amount
of domain knowledge needed, and including such features
would have interfered with that goal.

3.2 Byte N-Gramming Approach

Following the approach of Raff et al. [44], we use n-grams
as features such that a feature vector has binary zero/one
values if an n-gram is absent or present respectively.
From these feature vectors, a model is created using an
Elastic-Net regularized Logistic Regression classifier [65],
the objective of which is given in Equation (1). This
technique was chosen because it performs automatic
feature selection as part of the regularization, allowing
us to consider many different feature set sizes in a single,
computationally efficient process.

f(w) =
1

2
||w||1 +

1

4
||w||22+

C

N∑
i=1

log(1 + exp(−y · wTxi))
(1)

The value C in the loss function is the regularization
parameter. Larger values of C decrease the strength
of the regularization; as C → ∞, (1) approaches the
behavior of standard Logistic Regression. Smaller values
of C reduce the effective degrees of freedom of the model,
and force coefficients of w to become zero.

Instead of n-gramming the whole file, our n-grams
are extracted from only the aformentioned byte region
associated with the PE headers. This approach of n-
gramming only the header information is similar to the
approach of Stolfo et al. [55], which n-grams only the
beginning and ending bytes of a file, under the assump-
tion that malware would most likely be found in those
regions. We include the byte n-gram approach as a base-
line comparison for an approach using minimal domain
knowledge. We did testing of multiple different values
of n and used the model with the best performance in
evaluation. Further details of the n-gram results can be
found in Appendix A.

4 Neural Network Approach

We investigate two different types of neural networks
for this task. Neural networks in general have made
significant progress in speech [19] and image classifica-
tion [26], where they are given low level features and
construct their own higher level representations from
just the examples given. This behavior is particularly
desirable for our use case, since the format and behavior
of a PE file is complicated. A malicious author may
intentionally violate the rules of the format, making
domain knowledge approaches fragile. A neural network
could learn the way PE files are used in practice to in-
crease performance and reduce demand on the developer
to write additional code to process corrupted headers or
handle corner cases. An added benefit is that a network
will not have any kind of technical error on new and
novel inputs, where a hand developed feature extraction
process might. All of our networks were implemented in
the Keras framework [6]. For readers more comfortable
with neural network background, we invite them to skip
to section 4.2 for details on our attention mechanism.
The Keras code provides a more concise description of
our architecture and can be seen in Appendix B.

4.1 Fully Connected Neural Networks

Our potential features consist of 328 ordered bytes to
feed to our model. This limit makes it possible to use
a fixed sized feature representation, meaning that we
can use a Fully Connected (FC) Neural Network.3 With
the goal of working with minimal domain knowledge,
we give these bytes directly to our model. Each byte
is converted to a feature vector using a word2vec style

3 A FC Neural Network is one in which the connections be-
tween nodes are acyclic.

Learning the PE Header, Malware Detection with Minimal Domain Knowledge 5

embedding layer [34].4 The embedding layer maps each
byte value to a unique feature vector in RB , where B is
a hyper-parameter which defines the dimension of the
embedding space. For our work we use B = 16, and
found no performance difference when testing larger
dimension embeddings. After each byte is embedded, we
concatenate the 328 feature vectors into one large feature
vector in R5248 to use as the input to the following
layer. Note that the embedding layer is optimized by
the learning process.

For the architecture of our network, we used four
fully connected hidden layers. During testing, we found
that the each regularization technique we added to our
network (as described below) increased the highest gen-
eralization accuracy achieved. While this is not a new
phenomena, we note that the number of regularization
methods we had to apply is somewhat unusual in com-
parison to modern approaches in other domains.

We used Dropout [54] for regularization with 50%
probability on the hidden layers and 20% probability
on the embedding space. Batch normalization [23] was
applied after each hidden layer, which improves con-
vergence and also has a regularizing effect. This was
followed by the Exponential Linear Unit (ELU) as our
activation function [7]. ELUs are one of many exten-
sions to the successful ReLU [37] activation function,
and attempts to address some weaknesses of the ReLU
while retaining the faster convergence that it provides.
We also applied the recent DeCov regularization [8] to
the activations of the final hidden layer, using default
parameters suggested by Cogswell et al. The DeCov reg-
ularization penalizes correlation between the activation
values of the hidden layer, and its application affects all
prior layers in the network. Last, we included a stan-
dard weight decay (L2 norm) penalty of 10−4 for each
hidden layer, with the first hidden layer also having an
L1 norm penalty. The L1 norm has been found to be
effective when dealing with high dimensional problems
and induces sparsity, and was included since our input
to the first layer has 5248 dimensions.

4.2 Recurrent Neural Networks

While we have a fixed length representation of bytes to
feed to our neural network which enables us to use feed
forward networks, we also experiment with Recurrent
Neural Networks. RNNs are networks that process a
sequence of input vectors, and carry a hidden state rep-
resentation from one sequence to the next. Specifically,

4 We also tested using a one-hot bit encoding of each byte, but
found no difference in accuracy. We preferred the embedding layer
since it is built into the Keras framework.

we use the Long Short-Term Memory (LSTM) model of
Hochreiter and Schmidhuber [22] with forget gates [15].
These models have considerable additional complexity
and computational restrictions compared to the feed
forward architecture described in subsection 4.1, and
as a result are not as practical for the task at hand.5

Our interest is in seeing if RNNs are capable of learn-
ing the higher level features needed to make a benign
or malicious classification from the low level features
and sequential nature combined. This is important since
RNNs can handle variable length sequences, making
them good candidate models for future work in domain
knowledge free classification of executables.

In our work we are restricting ourselves to just the
header, making the sequence of bytes to examine much
smaller than it may otherwise be. In the case of learning
an LSTM, this is a necessary reduction to make the
problem computationally tractable. Processing all bytes
of a typical executable file one by one would result
in millions of time steps. Learning a sequence of such
length is far beyond the results of any work known to the
authors. (Graves [18] trained generative models of text
on up to 10,000 characters of history by using truncated
back-propagation, however generative models benefit
from an error signal that can be propagated at every
step; this approach is not applicable to a classification
task as opposed to a generative one.) For computational
efficiency, we will use an embedding layer to process the
input bytes, which are then fed into the RNN at each
step.

We used a model with three LSTM layers, with an
attention mechanism (explained shortly) before the clas-
sification. An example of the architecture we used is
in Figure 1. Similar to our feed forward networks, we
found additional regularization helpful in improving per-
formance. However the recurrent nature of these models
can change the nature of the impact a regularization
has. The DeCov regularization we used in subsection 4.1
inhibited learning for this problem in particular, so was
not included.6 We used a Dropout probability of 50% in
the method suggested by Gal [14] for regularization. For
training we performed gradient clipping as presented
by Pascanu et al. [39], clipping all norms to 1.0, and
we performed gradient updates using the Adam update
scheme [24].

5 It took about 11 days to train each LSTM model, compared
to less than an hour for the Fully Connected network, all using a
powerful Titan X GPU. All other methods presented in this work
took 2 minutes or less to train on a 10-core workstation.

6 We have successfully used the DeCov regularization with
RNNs for other tasks, so we do not believe this is an intrinsic
incompatibility.

6 Edward Raff et al.

Benign /
Malicious

Attention Mechanism

byte1 byte2 ... byten−1 byten

Fig. 1. Attention LSTM architecture used. Blue, shaded circles
indicate embedding layers, white circles indicate LSTM layers. A
3-layer LSTM processes each byte in sequence, and the activa-
tions of all time steps are merged into the attention mechanism.
The result from the attention mechanism is then used to make a
classification decision.

Attention Mechanism

Attention mechanisms have become an active area of
research in Recurrent Neural Networks. The basic moti-
vation is to improve performance by having the model
increase or decrease the consideration and contribution
for certain portions of the input, and have the added
benefit of often being an interpretable component of
the larger model. Here we briefly describe the attention
mechanism used in our LSTMs, which is based on the
approaches used by Yao et al. [58] and Rocktäschel et
al. [48]. Both of these works use multiple sequences as
inputs to the attention mechanism, and is a common
scenario for their application. The attention is used to
determine which items in one sequence are relevant to
a specific item in the other.

In our case we have only one input sequence, the
hidden states of the network. While our attention mech-
anism uses the same general components, the method
of its application can be seen as a simplification for the
case of sequence classification. We use the same basic
building blocks but focus one part of the attention to
the input sequence, and the other part to a summary
of the input as a whole. In this way we contribute a

method to attend to a subset of the input sequence, and
give the details below.

The output of our attention mechanism is a weighted
average of the hidden states (2).

Attention Output =
T∑

i=1

αihi (2)

Here hi is the hidden activation of the last LSTM layer
at step i. The summation weights αi are also a part of
the model, and

∑T
i=1 αi = 1. Given T steps of the RNN,

we compute the average hidden state activation over all
time steps as h = 1

T

∑T
i=1 hi. The vector h provides

information about the entire sequence, and each hi

provides information about one step in the sequence.
These are combined in a small 1-layer network (that is
a part of the larger RNN) as show in (3).

α̃i = vT tanh
(
W T

0hi +W T
1h+ b

)
(3)

The matrices W 0 and W 1 are for the attention mech-
anism’s hidden layer, focusing on the local and global
hidden state activations respectively. A single vector v
is used to obtained the unscaled importance at each
time step and b is the bias term. Finally, the softmax
function is applied to produce a weighted importance
over each time step that sums to one.

αi =
exp(α̃i)∑T
j=1 exp(α̃j)

(4)

For our implementation, we include batch normalization
and dropout for the attention mechanism. Experiments
using multi-layer attention networks inhibited learning
and did not perform as well as the one layer approach
outlined above.

5 Experimental Methodology and Results

We have now described a total of five models we wish
to evaluate. Extra Random Trees (ET) and Random
Forests (RF), which will be our domain knowledge base-
lines trained on PE header features parsed out into their
logical components. Logistic Regression on byte n-grams
(LR) from the PE header area, which would be the clas-
sical method to do a domain knowledge free approach
to this task. Last would be our two neural networks (FC
and LSTM), which are also trained from only the raw
bytes of the PE header.

To evaluate the results of a malware classifier most
prior work uses the metrics of accuracy or Area Under
the Curve (AUC), which are defined respectively as the
percentage of executables correctly marked as benign
or malicious, and the integral of the receiver operating

Learning the PE Header, Malware Detection with Minimal Domain Knowledge 7

characteristic (ROC) curve. These quantities are eval-
uated using either cross validation (CV) or on a held
out testing set. The AUC can also be interpreted as the
quality of the ranking a classifier produces of all data in
the testing set. When ordered perfectly an AUC score of
1.0 is obtained. We report both metrics in this work, but
use the Balanced Accuracy [5] where correctly labeling
all benign files accounts for half of the final accuracy
score and correctly labeling all malware account for the
remaining half. This essentially re-scales the two classes
to have equal weight.

Table 1. Breakdown of the number of malicious and benign
training and testing examples in each data group, along with
the sources from which they were collected. “Misc.” comprises
portablefreeware.com, Cygwin and MinGW.

training testing

Group A malicious benign malicious benign

Virus Share 175,875 — 43,967 —
Open Malware — — 81,733 —
MS Windows — 268,236 — 21,854
Misc. — 1,195 — —
total 175,875 269,431 125,700 21,854

Group B

Industry Partner 200,000 200,000 40,000 37,349
total 200,000 200,000 40,000 37,349

For training and evaluating these models we use
the same data used in Raff et al. [44]. This data is
divided into two groups and three testing sets, and
the data sources are summarized in Table 1. Group A
represents an approach to collecting data that others
have used, namely, using malware from Virus Share [47]
and binaries from Microsoft Windows to represent the
benign set. An additional malware-only test set collected
from Open Malware [43] is included as well. Group B
is data provided by an industry partner, sampled from
a larger corpus of benign and malicious executables.
Group B is supposed to better represent the common
types of files found on client machines.

We use the two different datasets to better evalu-
ate how well our models generalize to new data. The
approach used to assemble the Group A benign data
is used by most prior works, and can lead to signifi-
cant over-fitting on properties unique to binaries from
Microsoft. This often fails to generalize to new data,
as demonstrated by Raff et al. The Group B data ap-
pears to better represent common benign and malicious
executables since the models trained on Group B main-
tain predictive ability on the Group A data, but the
converse does not hold. We observe the same behavior
using our domain knowledge features, indicating that

Table 2. Performance of Random Forest and Extra Trees using
header-based features. Models trained on only the Group A train-
ing data.

Extra Trees Random Forest
Accuracy AUC Accuracy AUC

Group A Test 99.1% 0.999 99.5% 0.999
Group B Test 69.9% 0.723 71.5% 0.728
Open Malware 99.9% — 95.5% —

even the limited information from the PE Header fields
is enough to over-fit. This can be seen in Table 2, where
we trained the domain knowledge approaches on the
Group A training data. For this reason we do not further
consider training on Group A data for evaluation in this
work. We instead use the Group B training data for
model construction, and consider the generalization to
the Group B test set, as well as the Group A and Open
Malware test sets.

We can see clearly that the models over-fit to the
Group A data, even when limiting ourselves to only a
subset of the PE Header. The PE-Miner project also
used samples from their virology lab, but the ratio of files
from Microsoft installs versus their lab is not mentioned.
They report an AUC of 0.991, which is higher than what
we get for our data trained with Group B, but similar to
our 0.999 trained with Group A. This further leads us
to suspect that the original PE-Miner results suffer from
over-fitting. However, our suspicions notwithstanding,
the test accuracies obtained when training on Group B
(as presented in the next section) indicate the general
approach of PE-Miner is sound.

Thus for our results all models are trained on only the
Group B training data, and are evaluated against Group
A, Group B, and Open Malware test data. For each
method we have selected the parameters that resulted
in the greatest performance. For n-grams we found 3-
grams to perform best across all test sets, and more
details can be found in Appendix A. The decision tree-
based approaches were robust to parameter changes,
with no noticeable difference in scores once 100 or more
trees were used.

As neural networks are the primary interest of this
work, we take a moment to give greater detail about
their parameterization. We used three LSTM layers and
four Fully Connected layers in our models, and tested
networks with hidden state sizes of 128, 256, 512, 1024,
and 2048 neurons. Due to computational constraints,
we trained each parameterization for only 5 epochs,
and then selected the best performing ones to train for
additional epochs. Based on this we settled on a hid-
den state size of 256 units for both architectures. We
did not observe significant performance changes when

portablefreeware.com

8 Edward Raff et al.

increasing the number of neurons, and did some trial
tests of larger networks and networks with more layers.
Smaller networks performed slightly better while being
more tractable. We suspect that the limited amount of
data presented to the networks (only the first 328 bytes)
compared to other recent works in image and audio pro-
cessing meant that larger networks simply had too much
extra capacity and flexibility, enabling overfitting. This
suspicion is supported by the continued performance
improvements we obtained when adding additional reg-
ularization techniques to our training process. Our final
models were trained for 35 epochs, and the model from
the best performing epoch was selected for evaluation.

5.1 Model Results

The final test set scores for our methods are presented in
Table 3. We can see that the Fully Connected network
is an improvement over our domain knowledge approach
presented in subsection 3.1 in every metric. The network
achieves higher accuracies by 3 to 4 percentage points
and AUC improved by 0.053 for the Group B data. The
Attention LSTM model doesn’t perform quite as well as
the domain knowledge approach, but is still considerably
better than the byte n-gram approach of subsection 3.2.
While the Fully Connected network is the more practical
and appropriate model for this context, we believe the
LSTM model is likely to be critical in future work since
it can handle variable length sequences.

Below the ROC curves for all methods are presented
for the Group A test set (Figure 2) and Group B test
set (Figure 3). Due to the high AUC achieved by all
methods on the Group A data, Figure 2 is zoomed in to
the top left quadrant of the ROC curve. It is easy to see
that the feed forward network dominates all other curves
for Group A, and the 3-gram approach is dominated
by all other curves. The LSTM approach and decision
tree based approaches do better and worse in different
regions of the ROC curve. On the Group B test set, the
feed forward network almost dominates all other curves,
with the Random Forest doing slightly better in a small
region of the plot. These two methods generally did the
best in most regions, followed by the other approaches
overlapping each other in the plot.

Overall the feed forward network has performed bet-
ter than all other methods, and the LSTM performed
comparable to the domain knowledge approach at times,
and was generally better than the byte n-gram approach.
We note the importance of these results in demonstrat-
ing that current neural networks are able to learn from
raw byte data. The binary content of the PE header,
and of binary formats in general, is considerably dif-
ferent from the image, language, and signal processing

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P
os

it
iv

e
R

at
e

FC LSTM
ET RF
LR Random

Fig. 2. ROC plot for all models on Group A test data. Figure
zoomed in to the top left corner due to high AUC of all models.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P
os

it
iv

e
R

at
e

FC LSTM
ET RF
LR Random

Fig. 3. ROC plot for all models on Group B test data.

tasks that neural networks have performed well on in re-
cent years. All of the aforementioned tasks have a fairly
continuous degree of spatial locality. Image and signal
processing data can also be manipulated, transformed
and corrupted while still retaining the original content
and semantic meaning. This is applicable to language
problems as well, though to a lesser degree, through the
use of word replacement. Using corrupted data instances
has proven useful in training neural networks and in-
creasing model robustness, and is also an indication of
the robustness of information in those formats. This is
possible for all these tasks in part because the nature
of the data and information represented is generally
constant and has meaningful transitions when values
change. For example, a photograph of an apple can be
rotated, re-scaled, lightened, have noise added, etc. and

Learning the PE Header, Malware Detection with Minimal Domain Knowledge 9

Table 3. Performance of all methods on the test sets. Accuracy scores are balanced so classes have equal contribution.

Group A Test Group B Test Open Malware
Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%)

Fully Connected 90.8 97.7 83.7 91.4 89.9
LSTM 84.2 96.7 77.5 86.7 79.7
Extra Tree 86.4 97.2 80.7 86.1 85.5
Random Forest 78.9 96.8 82.3 91.2 64.4
LR 3-grams 71.2 91.4 77.8 87.3 61.5

still recognizably be a picture of an apple. The same can
not be said of an executable, where the modification of
even a few bits may lead to very different behavior.

In contrast, our binary data has some locality, but
its nature is variable length, and abrupt discontinuities
in locality are a constant impediment. Small perturba-
tions in the byte values can have a dramatically dif-
ferent meaning, making it difficult to do any kind of
augmented training. Even our limited PE Header data
also has different modalities of information: one byte
could be a bit-wise set of boolean variables, follow by a
byte representing an integer offset, followed by another
byte encoding a choice between one of many categori-
cal options. Each has an intrinsically different nature
that must be processed and extracted by the network
in different ways. That the network is able to learn this
classification problem, despite the raw data behavior
differing considerably from image and signal tasks, is
noteworthy. This provides evidence to the robustness of
a neural network approach and that it is plausible to
perform malware detection with reduced domain knowl-
edge.

Comparison with Whole File Byte N-Grams

The results from Raff et al. [44], when byte n-gram-
ming the whole executable, models trained on Group
B obtained balanced accuracies of 87.3%, 94.5%, and
81.1% for the same Group A, B, and Open Malware
tests sets. These scores indicate that the performance of
only the header information is at some level compara-
ble in generalization to those of byte n-grams over the
whole file. The significant difference between the two
approaches is with respect to the Group B test accuracy.
We would generally expect the performance on Group
B’s test set to be higher, since the model was trained
on data from the same source, as occurs with the byte
n-gram approach. The tested approaches instead per-
formed slightly worse on Group B test data compared
to the other tests sets. These results are an indication
that the information from the PE header can generalize
especially well to new data when provided an appro-
priate training set. This also highlights the importance
of testing on Group A and Open Malware to better

evaluate the generalization of our model to different
populations. While the improved generalization from
the PE header is a desirable quality, the lesser perfor-
mance on Group B is still an issue. Especially since we
believe Group B’s data better reflects the populations of
both benign and malicious software. Future work may
look to determine why the generalization characteristics
of these approaches seem to differ.

6 Inferring Relative Feature Importance

In order to further confirm our results, we would like
to understand what features have been constructed by
our neural network model. Model interpretability is
beneficial in diagnosing what a model has learned and
confirming that it is picking up on reasonable features, as
well as in detecting over-fitting. Understanding what a
neural network has learned is a challenging task though,
and in particular neural networks are often regarded
as a “black box” model. There are many different ways
to discuss and define what it means for a model to be
interpretable [28], and a common approach for neural
networks has been to visualize synthetic inputs that
would maximally activate certain neurons (which could
include output neurons) within a network [45, 46, 62].
Most of these approaches are motivated by the domain
of image processing and unfortunately are not directly
applicable for the malware domain. Especially since the
synthetic inputs that are generated may not correspond
to a realistic or plausible input.

To circumvent this issue, we look at the importance
of features learned by one of our networks and compare it
to the features used by our (more interpretable) domain
knowledge approach. By establishing an overlap between
the features found important for our neural networks and
domain knowledge approach, we increase our confidence
that the neural networks are learning reasonable features
and not over-fitting to the problem.

One of the benefits of the tree based approaches is
the ability to infer feature importance from the learned
model. Unlike the lasso models used with n-gramming in
subsection 3.2, these feature importance scores consider
the non-linear interactions of the features as learned

10 Edward Raff et al.

by the model. We use the Mean Decrease in Impurity
(MDI) [3, 29] on the training data to find the top 10
most important features, which can be found in Table 4.

We used the Gini measure for tree construction,
and so use it for measuring feature importance as well.
Denoting G(t) for the Gini impurity computed from
all data that went through tree node t, we obtained
the change in impurity ∆G(t) at node t by ∆G(t) =

G(t) − ptLG(tL) − ptRG(tR). Here tL and tR are used
to denote the left and right child branches of the node
t, and ptL and ptR the relative proportion of data that
went to each child. If ts is the feature used at node t,
p(t) is the fraction of all data that reached node t, and
1[x] is the indicator function, we can define the MDI
for a feature s of a tree model as (5).

MDIs =
∑
∀t∈Tree

1[ts = s] · p(t) ·∆G(t) (5)

For an ensemble of trees, we average the MDI score
from each tree to obtain a final score. The MDI is then
maximized when a feature causes a large decreases in
impurity and is used for larger portions of the dataset.
This intuitively gives higher scores to features used more
frequently that have a significant impact on the model’s
induction. We refer the reader to Louppe et al. [29]
for a more thorough description of the MDI and its
theoretical justification.

To aid in interpretation we show the relative im-
portance (RI), where a features importance score is
divided by the maximum importance value (i.e. RIs =
MDIs/ argmaxj MDIj). We can see that the Extra Trees
algorithm is focusing in on only a few feature types, with
the relative importance quickly decaying.

Table 4. Most important features, as determined by the Extra
Trees algorithm. Relative Importance (RI) is in the last column,
with 1.0 for the most important feature. Byte ranges expressed
as [min, max) when the feature is multiple bytes in length. For
features that may have a different location for 32 and 64-bit bi-
naries, the 32-bit location is specified first, followed by the 64-bit
location.

Header Field Byte Location RI

IMAGE_FILE_DLL 87th, 3rd MSB 1.00
Certificate Table’s size [220, 224)/[236, 240) 0.42
TERMINAL SERVER AWARE 159th. MSB 0.34
Export Table’s size [188, 192)/[204, 208) 0.33
CLR Runtime Header’s size [300, 304)/[316, 320) 0.23
Subsystem field [156, 158) 0.21
Debug table’s size [236, 240)/[252, 256) 0.18
CLR Runtime Header’s offset [296. 300)/[312, 316) 0.15
Import Table’s size [196, 200)/[212, 216) 0.12
NO SEH 158th, MSB 0.09

We can also infer feature importance from the atten-
tion weights of the LSTM model. For each datum, the
LSTM gives a weight to the hidden activation at each
time step. We can interpret these weights as importance
values for the byte presented at each aforementioned
time step. By computing these attention values for each
byte, and averaging over the training data, we obtain
a method of ranking the importance of each byte as
determined by our LSTM model. The relative impor-
tances from our LSTM do not decay as quickly. Part
of this can be explained by the fact that the LSTM is
given 328 distinct bytes, where the tree models are given
115 higher level features they represent. Given that the
LSTM observes features byte by byte, and that the Ex-
tra Tree’s domain knowledge features can be mapped to
multiple byte ranges, it is difficult to do a direct top-10
comparison. Instead we group the top 70 bytes by value,
as indicated by the attention weights. Comparing the
bytes found to be used by the LSTM to the byte ranges
of the features selected in Table 4 we discover multiple
overlaps between what the LSTM selected and what
the Extra Trees algorithm chose as the most important
features.

The IMAGE_FILE_DLL (byte 87), TERMINAL
SERVER AWARE (byte 159), and NO SEH (byte 158)
byte fields were all selected. These three fields are single
bit values within a larger byte sequence. The LSTM,
because of the embedding layer, cannot directly observe
the raw bit values. This is a positive indication the
LSTM is able to learn finer grained meaning embedded
in the byte information presented.

The whole byte range of the CLR Runtime Header’s
offset and size for 64 bit values (byte range [312, 320))
was selected. The two most significant bytes of the
Certificate Table’s size for 32-bit executables were chosen
and the most significant byte for 64-bit executables.
The most significant byte of the Subsystem field and
32-bit Debug table size were selected. The three most
significant bytes were selected for the Import Table’s
size in 32-bit executables. The LSTM seems to often
select only the most significant bytes of some multi-byte
fields. This may indicate that the field’s importance
is in whether or not a large value was given, allowing
the LSTM to avoid focusing on the lower order bytes.
We also note that only the first and last bytes of the
MS-DOS header were in the top 70 bytes by importance,
indicating that the MS-DOS header did not play a major
role in the decision process. This is corroborated by the
MDI of those features which is near zero in terms of
relative importance.

Overall the LSTM’s attention placed more weight on
bytes associated with nine of the top ten features chosen
by our domain knowledge approach. The correspondence

Learning the PE Header, Malware Detection with Minimal Domain Knowledge 11

between information is not necessarily perfect. The Ex-
tra Tree features are ranked by importance, but some
may or may not be used when a binary is 64-bit or 32-bit.
The LSTM feature importance is derived by averaging
the attention weights across all the training data sam-
ples, so we again lack this information in the aggregate
case. Despite these interpretation issues, there appears
to be meaningful overlap between what features our
LSTM network are learning to use, without any domain
knowledge, and what the Extra Trees algorithm selected
when given the domain knowledge features. This is sup-
ports the validity of our approach, and our claim that
neural networks can learn higher level features from raw
byte information.

We would expect that our Fully Connected network
has learned similar features, and likely learned them
better since it achieves higher accuracies. While it would
be desirable to affirm this case as well, our Fully Con-
nected network lacks the same direct, intuitive, and
interpretable feedback that our Attention mechanism
provides. Future work may look into how to better infer
feature importance for the malware domain for various
other types of neural architectures.

7 Network Calibration

We have shown that our neural network method sur-
pases the accuracy of a more conventional approach to
the PE header, and provided evidence that it learns
similar concepts. We note though that all methods have
shown evidence of a calibration issue, where the accu-
racies obtained are lower than one would expect given
their AUCs. This unusual characteristic is particularly
noticeable for our neural network approach when we
evaluate one the test set after each epoch, which can be
seen in Figure 4. Evaluating the test set performance
after each training epoch, we see the AUC scores are
stable and reasonably high, often reaching 0.91 for the
B test set and 0.98 for the A test set. The Group B test
set accuracy has some fluctuation, as does the Group
A test set accuracy. The Open Malware test set, which
contains only malware, has wide swings in accuracy —
and no AUC score since it contains only one class. When
testing multiple runs of the same architecture, we consis-
tently obtained this behavior and consistently achieved
similar peak accuracies and AUC scores. This behavior
occurred for our Recurrent network as well, and can be
seen in Figure 5. Based on the AUC performance one
can infer that it takes multiple epochs for the LSTM to
start learning the problem, where our Fully Connected
network reaches high AUC scores after just one epoch
through the data.

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Epochs

A
cc

ur
ac

y
/

A
U

C

A Accuracy B Accuracy OM Accuracy
A AUC B AUC

Fig. 4. Test set balanced accuracy and AUC scores for Fully Con-
nected model. AUC shown as dashed lines, balanced accuracy as
solid.

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Epochs

A
cc

ur
ac

y
/

A
U

C

A Accuracy B Accuracy OM Accuracy
A AUC B AUC

Fig. 5. Test set balanced accuracy and AUC scores for LSTM
attention model. AUC shown as dashed lines, balanced accuracy
as solid.

Considering that our model was trained on Group
B data, it is important to note the somewhat surpris-
ing behavior that the AUC on Group B test data is
worse than the AUC on Group A test data. The nor-
mal expectation would be that our model’s performance
should be highest on data most similar to the training
distribution, Group B, and hopefully generalize (with
a minimal degradation in accuracy) to other distribu-
tions, such as Group A and Open Malware. However, we
contend that the observed behavior is a positive result
for our approach. The Group A data is an objectively
simpler distribution than Group B, with most if not all
the benign files coming from Microsoft Windows. This
particular population should be easier to separate from
malware for a model that is generalizing well, and so it
is reasonable to get a higher AUC.

Next is the issue of performance discrepancy between
Accuracy and AUC. It is reasonable to expect that mod-
els achieving a high or low score in one metric should

12 Edward Raff et al.

obtain a similarly high or low score in the other. Indeed
it has been shown that the error rate and AUC of a
classifier are directly related, but they can also obtain
considerably different values depending on the data dis-
tribution used and the objective function of the model
[9]. In our data these scores differ considerably, with
especially large fluctuations for the Open Malware data.
This unusual scenario can be caused by the fact that
the AUC metric is a function of the model’s ranking
of data points, not by its ability to make a decision
about the classification of the data. Two examples of
how it is possible to have large discrepancies between
AUC and accuracy are presented in Figure 6. Our re-
sults match the scenario of Figure 6a, where the best
possible accuracy would be 90%, but a poor calibration
in the decision threshold results in only 60% accuracy.
Regardless of where the decision is made to change from
circles to crosses, the AUC is very high at 0.96. Similarly,
Figure 6b shows how a relatively high accuracy could
be obtained despite having a low AUC of only 0.64.

(a) Obtains accuracy of 60%,
but AUC of 0.96

(b) Obtains an accuracy of
80%, but an AUC of only 0.64

Fig. 6. Example showing how the AUC can be larger or smaller
than the accuracy. Two classes represented with circles and
crosses. Relative ordering indicates classification ranking, with
the dashed line showing the decision point.

The especially large swings in accuracy for the Open
Malware data indicate that the model is regularly chang-
ing the crossover point between benign and malicious
for that test set. Since the Open Malware data has only
malicious examples, it drops below 50% accuracy when
the decision point switches to preferring a label of be-
nign, and dramatically increases when preferring a label
of malicious. The Group A data, having members of
both classes, has less dramatic yet pronounced swings as
the decision threshold is adjusted. The Group B test set,
being from the same distribution as the training data,
has relatively minor changes. Ultimately, this would in-
dicate that while our decision point is being learned well
for the Group B data, it is not always well calibrated
for different data distributions.

Given this behavior it is reasonable to be concerned
with the classification accuracy when the model is ap-
plied to a new distribution. The consistently high AUC
scores give us confidence that, if we can obtain limited
labeled data for a new target distribution, the issue
can be circumvented through the use of probability
calibration techniques such as Platt’s Scaling [42] and
Isotonic Regression [61]. These methods use the pre-

diction outputs as a small feature set to a new model.
Platt’s Scaling essentially performs Logistic Regression
using the original model’s prediction as the only feature.
In this way these methods do not alter the decision
surface, but instead shift the decision threshold. The
issue of re-calibrating probabilities from limited data
was examined by Niculescu-Mizil and Caruana [38], and
they found that as few as 100 data points for calibration
could significantly improve performance.

We demonstrate this possibility in Figure 7, where a
small portion of the test set is used (with labels) to re-
calibrate the probabilities to the Group A data.7 For this
test we selected each model from the epoch that had the
worst accuracy on the test set. This evaluation is thus
using a different set of weights for the neural network
than what was used to get our results in section 5.
When selecting the networks epochs that had the worse
accuracy, the Group A test accuracies were 54.1% for
the Fully Connected network and 57.5% for the LSTM
network. By using just 20 calibration points both models
have dramatically improved accuracies, reaching 93.3%
and 75.1% for feed forward and LSTMs respectively.
Our Fully Connected network performed better even
after calibrating from just 10 labeled data points.

101 102 103

0.6

0.8

1

Calibration Set Size

B
al

an
ce

d
A

cc
ur

ac
y

Fully Connected Calibrated LSTM Calibrated
Fully Connected Original LSTM Original

Fig. 7. Accuracy of neural network models trained on Group B
data, and then calibrated with a small amount of the Group
A test data and tested on the remainder of the Group A test
data. Selected models from the training epoch that had the worst
generalization performance to Group A to be calibrated.

More advanced calibration could be done by re-
training only the last layer of the neural networks, keep-
ing all other weights the same. This is equivalent to using
the penultimate activations of the network as a feature

7 Platt calibration is normally done off the scalar product be-
tween the weight vector and the data vector, before the logistic
function is applied. Due to code limitations, we performed calibra-
tion on the output probabilities (i.e. after the logistic function).
This may make our results sub-optimal.

REFERENCES 13

vector and training a new logistic regression model from
those features. Re-training the final activation weights
learns a new decision surface, though linear with re-
spect to the already learned representation. This would
require more labeled data than simple re-calibration
schemes such as Platt’s Scaling, but may further extend
the utility of a pre-trained model. Prior work has shown
it is possible to fine tune the weights of a neural network
to new tasks [12, 59], and combined with our results on
re-calibration indicate that this approach would also be
viable.

While we have shown how to resolve the calibration
issue with very limited labeled data, we have yet to
ascertain why this calibration issue occurs. Both the
Random Forest and n-gram models also have lower accu-
racies than one would expect for their AUCs that they
achieve. For this reason we suspect this issue may some
how be related to the feature source (the PE-header),
and not the model or feature representation. The issue
is more apparent for the neural network approaches
simply because we plot the accuracy as a function of
training epoch, which shows the fluctuations occur over
training. Determining and better resolving the cause of
this fluctuation is an open problem for future work.

8 Conclusions and Future Work

In this paper we have shown the potential for neural
networks to learn from raw byte values, demonstrated
by classifying executables as benign or malicious with-
out any feature engineering or processing. Restricted
to a manageable range of bytes from the PE Header,
our networks are able to match and even surpass the
performance of a domain knowledge approach that has
equivalent information available. To wit, this is the first
application of neural networks on raw byte sequence
features for this task, and does not suffer the pitfalls of
the domain knowledge approach. We have also shown
our model’s underlying representation is robust enough
for re-calibrating models to new domains. This may
be significant to larger corporations and organizations
that may receive targeted or otherwise unique intrusion
attempts.

In future work, we intend to look at increasing the
amount of information available to a network and work
toward processing the whole executable with minimal
domain knowledge. Our re-calibration results may also
be of interest in malware family classification. In the
spirit of one-shot learning, a robust model may be better
suited to recognizing newly discovered malware families
after only a few examples. This could be valuable in
determining how widespread a newly discovered virus

type is, without having to manually construct signatures
for the virus.

Acknowledgment

We would like to thank the Laboratory for Physical Sci-
ences (LPS), where this work was performed and Mark
McLean for supporting it. We would like to thank the
Nvidia Corporation for their assistance and for provid-
ing GPU compute nodes for this work. In particular, we
would like to thank Jon Barker for his help in manag-
ing these resources for us. We would also like to thank
Robert Brandon for reviewing drafts of this paper and
helpful discussions.

References

[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the
surprising behavior of distance metrics in high dimensional
spaces. In J. v. d. Bussche and V. Vianu, editors, Proc. 8th
International Conference on Database Theory, pages 420–
434. Springer-Verlag, 2001.

[2] R. Bellman. Dynamic Programming. Princeton University
Press, Princeton, NJ, 1957.

[3] L. Breiman. Manual on setting up, using, and understand-
ing random forests v4.0. Department of Statistics, Univer-
sity of California Berkeley. California, USA, 2003.

[4] L. Breiman. Random forests.Machine learning, 45(1):5–32,
2001.

[5] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buh-
mann. The Balanced Accuracy and Its Posterior Distribu-
tion. In Proceedings of the 2010 20th International Confer-
ence on Pattern Recognition, ICPR ’10, pages 3121–3124,
Washington, DC, USA. IEEE Computer Society, 2010. isbn:
978-0-7695-4109-9.

[6] F. Chollet. Keras, 2015. url: https://github.com/fchollet/
keras.

[7] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential linear units
(ELUs). In Proceedings of the International Conference
on Learning Representations (ICLR), 2016. arXiv: 1511.
07289.

[8] M. Cogswell, F. Ahmed, R. Girshick, L. Zitnick, and D. Ba-
tra. Reducing overfitting in deep networks by decorrelating
representations. In International Conference on Learning
Representations, 2016.

[9] C. Cortes and M. Mohri. AUC optimization vs. error rate
minimization. In S. Thrun, L. K. Saul, and B. Schölkopf,
editors, Advances in Neural Information Processing Sys-
tems 16, pages 313–320. MIT Press, 2004.

[10] B. David, E. Filiol, and K. Gallienne. Structural analysis of
binary executable headers for malware detection optimiza-
tion. Journal of Computer Virology and Hacking Tech-
niques, 2016. issn: 2263-8733.

[11] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and C.
Glezer. Applying machine learning techniques for detection
of malicious code in network traffic. In Proceedings of the
30th Annual German Conference on Advances in Artifi-
cial Intelligence, KI ’07, pages 44–50, Berlin, Heidelberg.
Springer-Verlag, 2007. isbn: 978-3-540-74564-8.

https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289

14 REFERENCES

[12] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vin-
cent, and S. Bengio. Why does unsupervised pre-training
help deep learning? Journal of Machine Learning Research,
11:625–660, Mar. 2010. issn: 1532-4435.

[13] J. Friedman, T. Hastie, and R. Tibshirani. Regularization
paths for generalized linear models via coordinate descent.
Journal of statistical software, 33(1):1–22, 2010.

[14] Y. Gal. A theoretically grounded application of dropout in
recurrent neural networks, 2015.

[15] F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to
forget: continual prediction with lstm. Neural computation,
12(10):2451–2471, 2000.

[16] P. Geurts, D. Ernst, and L. Wehenkel. Extremely random-
ized trees. Machine learning, 63(1):3–42, Mar. 2006.

[17] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.
Book in preparation for MIT Press, 2016. url: http://
www.deeplearningbook.org.

[18] A. Graves. Generating sequences with recurrent neural net-
works. arXiv preprint, 2013. arXiv: arXiv:1308.0850.

[19] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber.
Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks. In Proceed-
ings of the 23rd international conference on Machine learn-
ing, pages 369–376, 2006.

[20] K. Hahn. Robust Static Analysis of Portable Executable
Malware. Master’s thesis, HTWK Leipzig, 2014, page 134.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In arXiv prepring arXiv:1506.01497,
2015.

[22] S. Hochreiter and J. Schmidhuber. Long short-term mem-
ory. Neural Computation, 9(8):1735–1780, Nov. 1997.

[23] S. Ioffe and C. Szegedy. Batch normalization: accelerating
deep network training by reducing internal covariate shift.
In Proceedings of The 32nd International Conference on
Machine Learning, volume 37, pages 448–456, 2015.

[24] D. P. Kingma and J. L. Ba. Adam: a method for stochastic
optimization. In ICLR, 2015.

[25] J. Z. Kolter and M. A. Maloof. Learning to detect and clas-
sify malicious executables in the wild. Journal of Machine
Learning Research, 7:2721–2744, Dec. 2006.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Wein-
berger, editors, Advances in Neural Information Process-
ing Systems 25, pages 1097–1105. Curran Associates, Inc.,
2012.

[27] C. Liangboonprakong and O. Sornil. Classification of mal-
ware families based on n-grams sequential pattern features.
In 8th IEEE Conference on Industrial Electronics and Ap-
plications (ICIEA), pages 777–782, June 2013.

[28] Z. C. Lipton. The mythos of model interpretability. In
ICML Workshop on Human Interpretability in Machine
Learning, 2016. arXiv: arXiv:1606.03490v1.

[29] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Un-
derstanding variable importances in forests of randomized
trees. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 26, pages 431–439. 2013.

[30] M. M. Masud, L. Khan, and B. Thuraisingham. A scalable
multi-level feature extraction technique to detect malicious
executables. Information Systems Frontiers, 10(1):33–45,
Mar. 2008.

[31] M. M. Masud, T. M. Al-Khateeb, K. W. Hamlen, J. Gao,
L. Khan, J. Han, and B. Thuraisingham. Cloud-based mal-
ware detection for evolving data streams. ACM Transac-

tions on Management Information Systems, 2(3):1–27, Oct.
2011.

[32] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici. Im-
proving malware detection by applying multi-inducer en-
semble. Comput. Stat. Data Anal., 53(4):1483–1494, Feb.
2009. issn: 0167-9473.

[33] Microsoft Portable Executable and Common Object File
Format Specification Version 8.3. Technical report, Microsoft,
page 98.

[34] T. Mikolov, G. Corrado, K. Chen, and J. Dean. Efficient es-
timation of word representations in vector space. Proceed-
ings of the International Conference on Learning Repre-
sentations (ICLR):1–12, 2013. issn: 15324435. arXiv: arXiv:
1301.3781v3.

[35] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitel-
man, S. Dolev, and Y. Elovici. Unknown malcode detec-
tion using OPCODE representation. In Proceedings of the
1st European Conference on Intelligence and Security In-
formatics, EuroISI ’08, pages 204–215, Berlin, Heidelberg.
Springer-Verlag, 2008. isbn: 978-3-540-89899-3.

[36] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, N. Japkow-
icz, and Y. Elovici. Unknown malcode detection and the im-
balance problem. Journal in Computer Virology, 5(4):295–
308, Nov. 2009.

[37] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. Proceedings of the 27th Inter-
national Conference on Machine Learning:807–814, 2010.

[38] A. Niculescu-Mizil and R. Caruana. Predicting good prob-
abilities with supervised learning. In International Confer-
ence on Machine Learning, pages 625–632, 2005.

[39] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of
training recurrent neural networks. In International Con-
ference on Machine Learning, pages 1310–1318, 2013. arXiv:
1211.5063.

[40] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. Thomas. Malware classification with recurrent networks.
In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, Apr. 2015.

[41] R. Perdisci, A. Lanzi, and W. Lee. McBoost: boosting scal-
ability in malware collection and analysis using statistical
classification of executables. In Annual Computer Security
Applications Conference (ACSAC), pages 301–310. IEEE,
Dec. 2008.

[42] J. C. Platt. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood methods.
In Advances in Large Margin Classifiers, pages 61–74. MIT
Press, 1999.

[43] D. Quist. Open malware. url: http://openmalware.org/
(visited on 05/25/2016).

[44] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward,
A. Tracy, M. McLean, and C. Nicholas. An investigation
of byte n-gram features for malware classification. Journal
of Computer Virology and Hacking Techniques, Sept. 2016.
issn: 2263-8733.

[45] M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J.
Dean, Q. V. Le, and A. Y. Ng. Building high-level features
using large scale unsupervised learning. In J. Langford and
J. Pineau, editors, Proceedings of the 29th International
Conference on Machine Learning (ICML), pages 81–88,
New York, NY, USA. ACM, 2012.

[46] M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should I
trust you?": explaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 1135–
1144, New York, NY, USA. ACM, 2016. isbn: 978-1-4503-
4232-2.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/arXiv:1308.0850
http://arxiv.org/abs/arXiv:1606.03490v1
http://arxiv.org/abs/arXiv:1301.3781v3
http://arxiv.org/abs/arXiv:1301.3781v3
http://arxiv.org/abs/1211.5063
http://openmalware.org/

REFERENCES 15

[47] J.-M. Roberts. Virus share. url: https : / / virusshare .
com/ (visited on 05/25/2016).

[48] T. Rocktäschel, E. Grefenstette, K. M. Hermann, T. Kočisky,
and P. Blunsom. Reasoning about entailment with neural
attention. In International Conference on Learning Repre-
sentations, 2016.

[49] M. Schultz, E. Eskin, F. Zadok, and S. Stolfo. Data min-
ing methods for detection of new malicious executables. In
Proc. IEEE Symposium on Security and Privacy, pages 38–
49, 2001.

[50] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer. De-
tection of malicious code by applying machine learning clas-
sifiers on static features: a state-of-the-art survey. Infor-
mation Security Technical Report, 14(1):16–29, 2009. issn:
1363-4127.

[51] M. Z. Shafiq, S. A. Khayam, and M. Farooq. Embedded
malware detection using Markov n-grams. In Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 88–
107. Springer, 2008.

[52] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq. PE-
Miner: mining structural information to detect malicious
executables in realtime. In R. Lippmann and A. Clark, ed-
itors, Recent Advances in Intrusion Detection, pages 121–
141. 2009.

[53] E. C. R. Shin, D. Song, and R. Moazzezi. Recognizing func-
tions in binaries with neural networks. In 24th USENIX
Security Symposium, pages 611–626. USENIX Association,
2015.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout : a simple way to prevent neural
networks from overfitting. The Journal of Machine Learn-
ing Research, 15(1):1929–1958, 2014.

[55] S. J. Stolfo, K. Wang, and W.-J. Li. Towards stealthy mal-
ware detection. In Malware Detection. M. Christodorescu,
S. Jha, D. Maughan, D. Song, and C. Wang, editors. Springer,
2007, pages 231–249. isbn: 978-0-387-44599-1.

[56] W. Wong and M. Stamp. Hunting for metamorphic engines.
Journal in Computer Virology, 2(3):211–229, 2006. issn:
1772-9904.

[57] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W.
Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J.
Klingner, A. Shah, M. Johnson, X. Liu, Ł. Kaiser, S. Gouws,
Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N.
Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s
Neural Machine Translation System: Bridging the Gap be-
tween Human and Machine Translation, 2016. arXiv: 1609.
08144.

[58] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle,
and A. Courville. Describing videos by exploiting tempo-
ral structure. In 2015 IEEE International Conference on
Computer Vision (ICCV), pages 4507–4515. IEEE, Dec.
2015. isbn: 978-1-4673-8391-2. arXiv: 1502.08029.

[59] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How trans-
ferable are features in deep neural networks? In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Wein-
berger, editors, Advances in Neural Information Process-
ing Systems 27, pages 3320–3328. Curran Associates, Inc.,
2014.

[60] G.-X. Yuan, C.-H. Ho, and C.-J. Lin. An improved GLM-
NET for L1-regularized logistic regression. Journal of Ma-
chine Learning Research, 13:1999–2030, 2012.

[61] B. Zadrozny and C. Elkan. Transforming classifier scores
into accurate multiclass probability estimates. In Proceed-
ings of the Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 694–

699, New York, NY, USA. ACM, 2002. isbn: 1-58113-567-
X.

[62] M. D. Zeiler and R. Fergus. Visualizing and understand-
ing convolutional networks. In European Conference on
Computer Vision (ECCV), Part I. D. Fleet, T. Pajdla, B.
Schiele, and T. Tuytelaars, editors. Springer, 2014, pages 818–
833. isbn: 978-3-319-10590-1.

[63] B. Zhang, J. Yin, J. Hao, D. Zhang, and S. Wang. Mali-
cious codes detection based on ensemble learning. In Pro-
ceedings of the 4th International Conference on Autonomic
and Trusted Computing, pages 468–477. Springer-Verlag,
2007. isbn: 3-540-73546-1.

[64] X. Zhang, J. Zhao, and Y. LeCun. Character-level Con-
volutional Networks for Text Classification. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Processing
Systems 28, pages 649–657. Curran Associates, Inc., 2015.
isbn: 0123456789. eprint: 1509.01626.

[65] H. Zou and T. Hastie. Regularization and variable selection
via the elastic net. Journal of the Royal Statistical Society
B, 67(2):301–320, Apr. 2005.

https://virusshare.com/
https://virusshare.com/
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1502.08029
1509.01626

16 REFERENCES

Appendix A N-Gram Details

In this section we provide further details on our work
in using byte n-grams on just the PE header. We have
seperated this section as it does not add to our goal of
showing that neural networks can learn from raw byte
data. However, we do wish to show that we attempted to
maximize the performance of the byte n-gram approach
to form as strong a baseline as possible.

For our implementation of this algorithm we used
a modified version of the newGLMNET algorithm [60].
By using the warm-start strategy from Friedman et
al. [13], we can efficiently train models for numerous
values of C at only incremental cost. This reduces the
time for performing a parameter search and produces a
regularization path, where we look at a property of the
model (such as accuracy or number of non-zero weights)
as a function of the regularization parameter.

Normally byte n-gramming of entire files is compu-
tationally expensive, especially when trying multiple
configurations. In such a case it is generally beneficial to
perform feature selection on the n-grams extracted due
to computational constraints and to reduce the impact
from the curse of dimensionality [1, 2]. This can be done
by using information-gain or simply removing features
that do not reach a minimum frequency [25, 41, 44].
Extracting the 328 bytes from our headers of interest
significantly reduces the amount of data to process, in-
creasing the flexibility of what we can experiment with
when using n-grams. For example, there are more than
4 billion unique 6-grams in our training data of headers,
and only 1,218 unique 6-grams that occur in at least 1%
of the header files. The more rigid structure of the PE
header also reduces counts for 2-grams: of the 65,532
seen, only 563 occur in at least 1% of the header files.
Thus it is computationally feasible for us to evaluate
n-grams ∀n ∈ [2, 6]. We also evaluate the merging of all
n-gram features into one larger feature set, where each
file is n-grammed for each value of n and concatenated
into one large feature vector for each file. Using all n-
grams in one feature set could potentially help avoid a
mismatch between the underlying data, where a field
may be stored in 1 to 4 contiguous bytes, and a fixed
n-gram size.

Table 5. Performance of byte n-grams trained on the Group B
training data using Elastic-Net regularized Logistic Regression.

2-grams 3-grams 4-grams 5-grams 6-grams [2,6]-grams

A Accuracy 72.4% 71.2% 71.1% 70.9% 71.3% 71.5%
A AUC 0.931 0.914 0.951 0.964 0.955 0.956
B Accuracy 76.6% 77.8% 78.9% 79.8% 79.4% 79.9%
B AUC 0.857 0.873 0.879 0.885 0.884 0.897
OM Recall 62.6% 61.5% 51.4% 53.3% 45.0% 51.7%

In Table 5 we show the balanced accuracy and AUC
on our test sets for groups A and B, as well as the recall
on Open Malware data. Over all test n-gram sizes, 2
and 3-grams performed the best when considering the
recall on Open Malware data, but had slightly worse
generalization to the A and B test sets compared to
large n-gram sizes. However, these n-gram models don’t
generalize as well as those that use domain knowledge, in
the sense of poorer performance when applied to another
dataset. Looking at the regularization path of 3-grams in
Figure 9, we can also see evidence of over-fitting as the
Group A test set performance at first increases, and then
drops while the model is still learning and improving
the performance on the Group B data. Similar behavior
can also be seen from 2-grams in Figure 8. The plot also
shows a significant 15 point gap between the 10-fold
cross validation accuracy and the accuracy on B’s test
set. This is significant since the model was trained on
Group B data. The model is thus failing to generalize in
two ways: from training data to testing data of the same
distribution (Group B training to Group B testing),
and from the training distribution to a new distribution
(Group B to Group A).

In figures Figure 10 and Figure 11, we can see this
learning curve behaves worse for the larger n-gram sizes,
where the Group A accuracies only decrease as the model
learns to fit the Group B training data. This indicates
an even high level of overfitting. This is congruent with
the specificity increasing (and therefore generalizabil-
ity decreasing) with n-gram sizes. These regularization
paths provide further evidence that 2 and 3-grams are
better than ≥ 4 grams for PE headers.

10−5 10−4 10−3 10−2 10−1 100

0.7

0.75

0.8

0.85

0.9

C

A
cc

ur
ac

y

CV A Test B Test

Fig. 8. Regularization path of 2-grams, with 10-fold cross valida-
tion and test set performance measured in weighted accuracy.

REFERENCES 17

10−5 10−4 10−3 10−2 10−1 100

0.7

0.75

0.8

0.85

0.9

0.95

C

A
cc

ur
ac

y

CV A Test B Test

Fig. 9. Regularization path of 3-grams, with 10-fold cross valida-
tion and test set performance measured in balanced accuracy.

10−5 10−4 10−3 10−2 10−1 100

0.7

0.75

0.8

0.85

0.9

0.95

C

A
cc

ur
ac

y

CV A Test B Test

Fig. 10. Regularization path of 6-grams, with 10-fold cross vali-
dation and test set performance measured in weighted accuracy.

We also note again the importance of evaluating
generalization of executables over multiple corpora, as
otherwise we would have erroneously considered 5 and
6-grams to perform best in this scenario, since they have
an almost 2 point advantage over 3-grams when tested
on the Group B data. Yet when tested on different dis-
tributions (Group A and Open Malware), 5 and 6-grams
perform considerable worse than 3-grams. This is impor-
tant in the context of a malware classifier, as a deployed
model may see data considerably different from what it
was trained on. The Open Malware performance would

10−5 10−4 10−3 10−2 10−1 100

0.7

0.75

0.8

0.85

0.9

0.95

C

A
cc

ur
ac

y

CV A Test B Test

Fig. 11. Regularization path modeling using 2 through 6 grams,
with 5-fold cross validation and test set performance measured in
weighted accuracy.

indicate that the 3-grams are more likely to generalize
to new data than the 6-grams, which degrade to worse
than 50% recall.

18 REFERENCES

Appendix B Keras Model Definitions

For the specifics in how our neural network architectures
are organized, we include partial Python code snippets
of the model definitions. These do not include the defini-
tions for custom layers, but are meant to provide more
precise details of how our architecture is designed for
those who are interested. All models were implemented
using version 1.0.4 of the Keras library.

In both of the code snippets below, maxlen =
328, indicates the length of the byte sequence and
embed_size = 16 is the size of our embedding layer.
The variable main_input represents the initial sequence
of bytes given to the model. The Fully Connected net-
work is defined in Listing 1. In Listing 2, S is the number
of neurons in the LSTM layers.

main_input = Input(shape=(maxlen,), dtype='int32',
name='main_input')↪→

emb = Embedding(256, embed_size, input_length=maxlen,
dropout=0.2, W_regularizer=l2(1e-4))(main_input)↪→

x = Flatten()(emb)

num_layers = 4
for i in range(num_layers):

W_reg = l2(1e-4)
if i == 0:

W_reg = l1l2(1e-4)
x = Dense(layer_size, activation='linear',

W_regularizer=W_reg)(x)↪→

x = BatchNormalization()(x)
x = ELU()(x)
if i == num_layers-1:

x = DeCovRegularization(0.1)(x)
x = Dropout(0.5)(x)

loss_out = Dense(1, activation='sigmoid',
name='loss_out')(x)↪→

model = Model(input=[main_input], output=[loss_out])
optimizer = Adam(lr=0.001)
model.compile(optimizer, loss='binary_crossentropy')

Listing 1. Keras model definition for Fully Connected network

main_input = Input(shape=(maxlen,), dtype='int32',
name='main_input')↪→

emb = Embedding(256, embed_size, input_length=maxlen,
dropout=0.2, W_regularizer=l2(1e-4))(main_input)↪→

hs = [] #hidden states from each LSTM layer stored here
hs.append(LSTM(S, dropout_W=0.5, dropout_U=0.5,

W_regularizer=l2(1e-5), U_regularizer=l2(1e-5),
return_sequences=True)(emb))

↪→

↪→

for l in range(1, num_layers):
hs.append(LSTM(S, dropout_W=0.5, dropout_U=0.5,

W_regularizer=l2(1e-5), U_regularizer=l2(1e-5),
return_sequences=True)(hs[-1]))

↪→

↪→

local_states = merge(hs, mode='concat')
average_active = AverageAcrossTime()(local_states) #this

produces h↪→

state_size = lstm_layer_size*num_layers
#Attention mechanism starts here
attn_cntx = merge([local_states,

RepeatVector(maxlen)(average_active)],
mode='concat')

↪→

↪→

attn_cntx = TimeDistributed(Dense(lstm_layer_size,
activation='linear',
W_regularizer=l2(1e-4)))(attn_cntx)

↪→

↪→

attn_cntx =
TimeDistributed(BatchNormalization())(attn_cntx)↪→

attn_cntx =
TimeDistributed(Activation('tanh'))(attn_cntx)↪→

attn_cntx = TimeDistributed(Dropout(0.5))(attn_cntx)
attn = TimeDistributed(Dense(1, activation='linear',

W_regularizer=l2(1e-4)))(attn_cntx) # α̃i↪→

attn = Flatten()(attn)
attn = Activation('softmax')(attn) # αi

attn = Reshape((maxlen, 1))(attn)
attn = TileOut(state_size)(attn) #repeats value to make

a specific shape↪→

final_context = merge([attn, local_states], mode='mul')
final_context = SumAcrossTime()(final_context) # eq

(2),
∑T

i=1 αihi↪→

final_context = Dense(state_size, activation='linear',
W_regularizer=l2(1e-4))(final_context)↪→

final_context = BatchNormalization()(final_context)
final_context = Activation('tanh')(final_context)
final_context = Dropout(0.5)(final_context)
loss_out = Dense(1, activation='sigmoid',

name='loss_out')(final_context)↪→

model = Model(input=[main_input], output=[loss_out])
optimizer = Adam(lr=0.001, clipnorm=1.0)
model.compile(optimizer, loss='binary_crossentropy')

Listing 2. Keras model definition for LSTM Attention Network

	Introduction
	Related Work
	Baseline Approaches
	Neural Network Approach
	Experimental Methodology and Results
	Inferring Relative Feature Importance
	Network Calibration
	Conclusions and Future Work
	N-Gram Details
	Keras Model Definitions

